BBS Faculty Member - Paul Rosenberg

Paul Rosenberg

Department of Neurology

Boston Children's Hospital
Center for Life Sciences Building, Room 13073
300 Longwood Avenue
Boston, MA 02115
Tel: 617-919-2634
Fax: 617-730-0695
Visit my lab page here.

Glutamate homeostasis
Neurotransmitter transporters, like ion channels, play essential roles at synapses in the central nervous system as the major regulators of glutamate homeostasis. Glutamate homeostasis has been found to be important in the physiology of normal synapses, synaptic plasticity, neurodegenerative disease, demyelinating disorders, drug addiction, pain, and mental illness. We are studying the regulation of expression of glutamate transporters and the mechanisms linking their function to neuronal activity. This work has involved cloning of novel forms of glutamate transporters, identifying and characterizing protein interactors, investigating mechanisms of signal transduction that regulate transporter activity. Recently, we have generated a conditional knockout of the major glutamate transporter in the brain, GLT-1/EAAT2, to understand the distinct cell-type specific functions of GLT-1 expressed in neurons versus astrocytes. A major accomplishment of the lab has been the discovery that GLT-1, long thought to be exclusively a glial transporter, is the major glutamate transporter in excitatory terminals. Using conditional GLT-1 knockout mouse lines in which GLT-1 is deleted in astrocytes or in neurons, we have found that GLT-1 mediates a large amount of synaptosomal glutamate uptake, which is surprising, given that GLT-1 expressed in neurons is only a small fraction of total GLT-1 protein. Furthermore, in behavioral and biochemical phenotyping of the neuronal GLT-1 knockout mouse, we have found evidence that neuronal GLT-1 plays a critical role in the regulation of dopamine signaling. These finding are likely to be very important in our understanding of the basic mechanisms underlying drug addiction as well as mental illness, in particular, schizophrenia.

Mechanisms of oligodendrocyte (OL) injury
We study periventricular leukomalacia (PVL), the principal pathological lesion underlying cerebral palsy in premature infants. The primary cell-type injured in this lesion is the OL. For this reason, it is important to understand the mechanisms of death that kill OLs that might be activated in PVL. We have discovered that developing OLs are more vulnerable than mature OLs to both oxidative and excitotoxic injury. We are characterizing the mechanisms of cell death, the basis for the developmental regulation of the vulnerability to injury, as well as possible approaches for therapeutic intervention. These studies currently are focused on the role of Trp channels in oligodendrocyte development and differentiation.

Zinc as a regulator of survival and axon regeneration in the central nervous system
Using an optic nerve injury model, with Larry Benowitz we have discovered that free ionic zinc accumulates in the retina shortly after optic nerve injury. Further, we have found that preventing this accumulation by injecting chelators into the eye, or knocking out a specific zinc transporter, results in increased survival of retinal ganglion cells and, most remarkably, axon regeneration. We are currently studying the pathways by which zinc regulates both survival and regeneration.

Last Update: 7/30/2015


For a complete listing of publications click here.



DeSilva, T.M., Borenstein, N.S., Volpe, J.J., Kinney, H.C., Rosenberg, P.A. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. Journal of Comparative Neurology. 2012;520(17):3912-3932.

Petr, G.T. Bakradze, E. Frederick, N.M. Wang, J. Armsen, W. Aizenman, E. Rosenberg, P.A. Glutamate transporter expression and function in a striatal neuronal model of Huntington's disease. Neurochemistry International. 2013;62(7):973-981.

Frederick, N.M. Bertho, J. Patel, K.K. Petr, G.T. Bakradze, E. Smith, S.B. Rosenberg, P.A. Dysregulation of system xc(-) expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice. Neurochemistry International. 2014;76:59-69.

Back, S.A. Rosenberg, P.A. The roles of glia in perinatal white matter injury. Glia. 2014;62:1790-1815.

Petr, G.T. Sun, Y. Frederick, N.M. Zhou, Y. Dhamne, S.C. Hameed, M.Q. Miranda, C. Bedoya, E.A. Fischer, K.D. Armsen, W. Wang, J. Danbolt, N.C. Rotenberg, A. Aoki, C.J. Rosenberg, P.A. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. Journal of Neuroscience. 2015;35:5187-5201.

© 2015 by the President and Fellows of Harvard College