BBS Faculty Member - Fernando Camargo

Fernando Camargo

Department of Stem Cell and Regenerative Biology

Boston Children's Hospital
One Blackfan Circle
Karp Building, Room 09211
Boston, MA 02115
Tel: 617-919-2102
Visit my lab page here.

The Camargo laboratory focuses on the study of adult stem cell biology, organ size regulation, and cancer.

Despite fantastic progress in developmental biology research over the past decade, one aspect of development and tissue homeostasis for which very little is understood is how individual tissues reach and then maintain their appropriate size. Classic studies have demonstrated that organisms have an exquisite ability to ‘sense’ the size of their organs and to dynamically instruct their expansion or degrowth until a ‘correct’ contextual dimension is reached. Though these observations provide evidence of a highly specific and precise regulatory mechanism specifying organ size, the nature of the molecules and pathways involved in this process remain mysterious.

Our laboratory utilizes a variety of genetic, biochemical, and high throughput technologies to identify molecules and mechanisms that regulate this fascinating process in mammals. We are particularly interested in studying the function of the newly discovered Hippo signaling pathway and its effects on tissue size, homeostasis and cancer. We have demonstrated that Hippo signaling can be a very potent regulator of organ size in mice and have provided a conceptual link between organ size regulation and stem cell activity through Hippo signals. Studies are now aimed at fully dissecting the components and the role of this cascade in somatic stem cells. Insight into these processes will shed light on fundamental aspects of tissue regeneration and will facilitate the development of therapeutic approaches based on cellular transplantation. Additionally, our group is investigating the relevance of organ size regulatory mechanisms as new components of a tumor suppressor pathway.

Our laboratory also has a strong interest in studying the cellular and molecular biology of hematopoietic stem cells. Our studies focus primarily on the in vivo roles of transcription factors and microRNAs in stem cell fate decisions, differentiation, and malignancy. Along these lines, we have recently developed a novel method for the tracking and monitoring of individual hematopoietic stem cells and their progeny in vivo. This model will be an invaluable resource in the years to come to understand the behavior, dynamics and heterogeneity of stem cells in normal and an array of disease conditions.

Last Update: 2/4/2014


For a complete listing of publications click here.



Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. (2011) Yap1 Acts Downstream of a-Catenin to Control Epidermal Proliferation. Cell. Mar 4; 144(5): 782-95.

Stehling-Sun S, Dade J, Nutt SL, DeKoter RP and Camargo FD. (2009) Regulation of lymphoid versus myeloid fate by Mef2c. (2009) Nature Immunology 10:289-96

Johnnidis JB, Harris MH, Wheeler TR, Stehling-Sun S, Lam MH, Brummelkamp TR, Fleming MD and Camargo FD. (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125-29

Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, and Brummelkamp TR. (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 17:2054-60

© 2013 by the President and Fellows of Harvard College