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Receptive-field dynamics in the central

visual pathways

Gregory C. DeAngelis, Izumi Ohzawa and Ralph D. Freeman

Neurons in the central visual pathways process visual images within a localized region of space,
and a restricted epoch of time. Although the receptive field (RF) of a visually responsive neuron
is inherently a spatiotemporal entity, most studies have focused exclusively on spatial aspects of
RF structure. Recently, however, the application of sophisticated RF-mapping techniques has
enabled neurophysiologists to characterize RFs in the joint domain of space and time. Studies
that use these techniques have revealed that neurons in the geniculostriate pathway exhibit
striking RF dynamics. For a majority of cells, the spatial structure of the RF changes as a func-
tion of time; thus, these RFs can be characterized adequately only in the space-time domain.
In this review, the spatiotemporal RF structure of neurons in the lateral geniculate nucleus and

primary visual cortex is discussed.
Trends Neurosci. (1995) 18, 451-458

HE RECEPTIVE FIELD (RF) is defined classically as
the area of visual space within which the discharge
of a neuron can be influenced'. The RF is a central
construct in the conceptual and analytical framework
that is used by neurophysiologists to study the func-
tion of visually responsive neurons, because it charac-
terizes the transformation between the visual image
and neuronal activity. Although traditional textbook
depictions (for example, Fig. 1, left) define the RF in
spatial coordinates only, it is inherently a function of
both space and time. Thus, to describe adequately
how a neuron processes the visual image, its RF must
be characterized in the joint space-time domain.
In recent years, the development of powerful RF-
mapping techniques, based on white-noise analysis,
has facilitated the spatiotemporal characterization of

© 1995, Llsevier Science Lad 0166 - 2236:95/$09.50

RFs for neurons in the geniculo—cortical processing
stream™*>'""'%, Results that were obtained using this
approach have resolved some longstanding questions
concerning the origin of neuronal response properties,
such as direction selectivity. In addition, because these
studies have revealed new aspects of RF structure, they
pose new challenges for understanding and modeling
the neural circuitry of the early visual pathways.

The geniculostriate processing stream

In the mammalian visual system, information is
processed sequentially along the pathway from the
retina through the lateral geniculate nucleus (LGN) to
the primary (or striate) visual cortex. Spiking neurons
along this pathway exhibit one of three main RF
configurations (Fig. 1). For retinal ganglion cells and
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LGN neurons, the RF has an approximately circular,
center-surround organization'®’. Two primary con-
figurations are observed: one in which the RF center is
responsive to bright stimuli ({ON-center’; see Fig. 1A),
and the surround is responsive to dark stimuli; and
another (‘OFF-center’) in which the respective polarities
are reversed. Simple cells, which receive most of the
geniculate input to the primary visual cortex, have
spatially oriented RFs (Fig. 1B), with alternating elon-
gated subregions that are responsive to bright or dark
stimuli*'®. It is generally thought that simple-cell RFs
are formed from an array of LGN RFs (Refs 18 and 19),
although intracortical inhibitory mechanisms might
also play a role in generating the stimulus selectivity
of these cells®. Complex cells, the other major physio-
logical cell type in the striate cortex, respond to both
bright and dark stimuli that are placed anywhere
within their RFs (Refs 18 and 21) (Fig. 1C). These RFs
are thought to be formed through a non-linear com-
bination of subunits that resemble simple cells®'#2"%,

Approaches to RF mapping

The response of a neuron to monocular visual stimu-
lation can generally be described as a function of three
variables: two dimensions of space, x and y (that is,
retinal coordinates), and time, f. Clearly, extensive
collection of data is required to map a cell’s RF, with
high resolution, in the x-y—t domain, especially given
that neuronal responses have a stochastic nature®.
Since Hubel and Wiesel'” ' plotted by hand the RFs of
neurons in the LGN and striate cortex over 30 years
ago, a variety of approaches has been used to map
visual RFs quantitatively. Most of these techniques
sacrifice resolution along at least one dimension of the
RF in order to achieve reasonable data-collection
times. In this section, some traditional RF mapping
techniques, along with their limitations, are con-
sidered briefly and a class of powerful techniques that
overcomes these limitations is introduced.

Many studies have characterized RFs using static
sensitivity maps, often referred to as ‘line-weighting’
functions®?. In this approach, a bar (or spot) of light
is turned on and off at different positions within the
RF, and the average firing rates of a cell to stimulus
onset and offset are computed. Because responses are
averaged over time, information concerning the tem-
poral structure of the RF is lost. Consequently, static
RF profiles are meaningful only if temporal-response
properties are independent of spatial position. In
some studies, static RF profiles have been derived from
responses to moving light and dark bars®. This
method has the additional disadvantage that spatial
and temporal factors are confounded in the RF map.

‘Response-plane’ techniques”* improve upon
static RF maps by measuring the temporal pattern of
discharge elicited at each spatial position by a flashing
bar (or spot) of light. Although this approach can yield
a complete x-y~t RF map, it is quite slow. For example,
consider the task of characterizing a cell’s visual sensi-
tivity in x—y-t by presenting briefly flashed (that is,
50 ms) bright and dark spots at each of 20 X 20 positions
in the x-y plane. To collect 1s of response following
each flash, and to average over ten repetitions of each
stimulus, would require a presentation time of more
than 2h. Moreover, studies that have used the
response-plane technique??* have typically used
flashed stimuli that are too long in duration to reveal
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the intrinsic temporal dynamics of a cell’s RF (that is,
they measure a step response rather than an impulse
response).

In recent years, several research groups**'** have
developed sophisticated RF-mapping techniques that
are based on pseudo-random spatiotemporal stimuli
(that is, ‘white noise’). White-noise analysis is a gen-
eral tool for characterizing the input—output behavior
of linear and non-linear systems*, It has a rich his-
tory of application in many fields, including retinal
electrophysiology®'. In the white-noise approach to RF
mapping, a rapid, pseudo-random stimulus sequence
that consists of patterns of spots or bars is presented,
and the neuronal spike train is correlated to the
stimulus sequence (that is, cross- or reverse-correlation).
The aim of this correlation procedure is to character-
ize the transformation that occurs between the visual
stimulus and the response of a neuron (that is, the
neuron’s ‘transfer function’). Because stimuli are pre-
sented in rapid succession, without pausing to collect
the response to each pattern, this technique is fast. For
example, the x-y-t measurement that is described
above, involving 20 X 20 positions and a 50 ms dura-
tion, could be accomplished in ~7 min. Theoretical
and practical details of this approach are beyond the
scope of this paper, and are reviewed elsewhere**. For
neurons that behave linearly, which is approximately
the case for LGN X-cells*® and cortical simple cells®*?*,
first-order correlations between stimulus and response
provide a nearly complete characterization of the RF.
For non-linear neurons, such as complex cells®?!*¢, the
manner in which a neuron’s response depends on the
interactions between stimuli (that is, between different
positions or times) must also be considered. Thus,
higher-order correlations are needed to characterize
fully the RFs of these cells.

The receptive field as a spatiotemporal entity

The textbook-style depictions of Fig. 1 (left) essen-
tially ignore the temporal dimension of the RF.
However, the organization of the RF is not static. In
fact, when examined in the space-time domain, the
RFs of most cells in the geniculo-cortical pathway
exhibit striking dynamics. Given that the RF is a spatio-
temporal entity, a fundamental question is that of
how space and time interact to determine the proper-
ties of a cell’s response. There are two basic possibilities:
the RF might be space-time separable or it might be
inseparable®”*®, Defined formally, space-time separ-
ability means that the three-dimensional RF, R(x,y,1),
can be described as the product of two independent
functions: a spatial profile, G{(x,y), and a temporal pro-
file, H(®) [that is, R(x,y,t) = G(x,y) X H(D)]. If a cell's RF
is space-time inseparable, it cannot be broken down
into spatial and temporal components - a spatio-
temporal map is the minimum acceptable descriptor.
For these cells, traditional methods of RF mapping,
which average responses over time, will not provide
an accurate portrait of the RF. The importance of this
distinction is illustrated clearly by examining the
spatiotemporal RFs of simple cells. Recent studies
have shown that simple cell RFs range from separable
to strongly inseparable®>'314,

Complete spatiotemporal (x-y-t) RF profiles are
shown in Fig. 2 for representative simple cells from
the cat’s striate cortex. For the cell of Fig. 2A, the RF is
approximately space-time separable. In practical



REVIEW

G. DeAngelis, 1. Ohzawa and R. Freeman — Receptive-field dynamics

terms, this means that the spatial arrangement of RF
subregions is fixed but their strengths and polarities
are modulated over time. For the cell of Fig. 2B, the RF
is space-time inseparable, because its spatial organiz-
ation changes with time. Although there are many
possible types of space-time inseparability, simple
cells with inseparable RFs exhibit a highly characteris-
tic pattern in which the spatial phase of the RF
changes gradually as a function of time**, When the
temporal sequence of RF profiles in Fig. 2B is animated
(that is, shown as a movie), subregions of the RF
appear clearly to move rightward over time within a
tapered spatial window. Note, however, that the two-
dimensional spatial envelope of the RF remains
approximately fixed as time progresses**. Not surpris-
ingly, this characteristic form of space-time insepar-
ability has implications for understanding motion
selectivity.

Spatiotemporal RF transformations along the
geniculostriate pathway

A convenient way to characterize the dynamics of
RF structure is to construct an x-t plot'’. An x-t plot
summarizes how the one-dimensional spatial organiz-
ation of the RF (along the axis perpendicular to the
cell’s preferred orientation) changes with time.
Figure 3 shows x-t plots for seven representative neurons
from the cat’s LGN and striate cortex. For LGN cells
(Fig. 3A and B), the x-t plot typically exhibits a
center-surround organization in space, and a biphasic
structure in time (see also Refs 5 and 6). To a first
approximation, the x-t profiles of LGN cells are
space-time separable; however, many LGN cells (for
example, Fig. 3A) show two subtle, yet clear, devi-
ations from separability. The temporal response of the
surround is often delayed slightly with respect to that
of the center. In addition, the first temporal phase
of the surround often appears to converge with the
second temporal phase of the center, although this
second deviation might simply be a consequence of
the delayed surround response.

Recent studies have revealed two classes of LGN
neurons, lagged and nonlagged, that exhibit different
temporal response properties**!. The RFs of lagged
cells are distinguished from those of nonlagged cells
by a temporal phase shift*. For nonlagged cells
(Fig. 3A), the first temporal phase of the RF profile is
largest, whereas for lagged cells (Fig. 3B), the second
temporal phase typically dominates. This property
accounts for the delayed response of lagged cells to
presentation of a flashed spot stimulus*. The tem-
poral properties of lagged cells are thought to arise
from intra-geniculate circuitry because lagged respons-
es are not seen in the retina**; however, the connec-
tivity that underlies lagged responses remains unclear,

Figure 3C and D shows x—t plots for simple cells that
have approximately space-time separable RFs. These
x-t profiles exhibit multiple lobes in both space and
time, and are well approximated by the product of a
spatial profile and a temporal profile. Thus, the tradi-
tional notion that each cell has a unique spatial RF
configuration still pertains to these cells. The spatial
profile exhibits typically one to five distinct sub-
regions of alternating polarity, and all possible types
of spatial symmetry (that is, spatial phases) are
observed***, The temporal profile is typically biphasic,
although some simple cells exhibit either monophasic
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Fig. 1. $patial receptive field (RF) structure of the major classes of neurons in the geniculo-
striate pathway. (A) Schematic and experimental profiles of the RF of an ON-center neuron
from the lateral geniculate nucleus (LGN) of a cat. In the traditional depiction (left), the RF has
a central ‘ON’ region (green, +) which is responsive to the onset of a bright stimulus, and a
surrounding ‘OFF’ region (red, ) which is responsive to the onset of a dark stimulus (or the off-
set of a bright stimulus). On the right is shown a two-dimensional spatial (x-y) RF profile for
an ON-center X-cell, as measured using a reverse correlation technique®>. Regions of visual
space that are responsive to bright spots are shaded green, and are delimited by solid contour
lines; regions that are responsive to dark spots are shaded red, and are represented by broken
contours. Color saturation is proportional to response strength. A center-surround structure is
clearly seen in this profile, although the surround is fairly weak. Similar data have been pre-
sented elsewhere for retinal ganglion* and LGN (Refs 5-7) cells. (B) Depicted schematically on
the left, the RF of a simple cell exhibits an alternating arrangement of elongated subregions
that are responsive to either bright (green, +) or dark (red, -) stimuli. A measured RF profile for
a simple cell from cat striate cortex (area 17) is shown on the right as a contour map (con-
ventions as in A). Similar data have been presented elsewhere”**%. (C) Spatial RF structure of
a complex cell. In the traditional schematic illustration, shown on the left, pluses and minuses
are shown throughout the field, indicating that the cell responds to both bright and dark
stimuli at each position. Panels on the right show the RF profile of an area 17 complex cell, as
measured using reverse correlation (see also Refs 9 and 10). Because regions that are respon-
sive to bright and dark stimuli overlap, separate profiles are shown for bright and dark stimuli.

or triphasic responses®®. Simple cells with multiphasic
temporal RF profiles have bandpass temporal fre-
quency tuning, whereas cells with monophasic profiles
exhibit low-pass tuning*®.

Hubel and Wiesel'® suggested originally that simple
cell RFs are created by combining inputs from a group
of ON- and OFF-center geniculate neurons with RFs
that are arranged in rows, a concept that has received
some direct experimental support recently®. In this
regard, it is interesting to note that the temporal-
response pattern within a single subregion of a separ-
able simple-cell RF (Fig. 3C and D) is similar to the
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Fig. 2. Dynamics of receptive field (RF) structure of simple cells from striate cortex of the cat. By varying the correlation delay, t, in the RF map-
ping algorithm, ‘snapshots’ of the RF can be obtained at different times relative to stimulus onset. These data were obtained using a reverse corre-
lation technique, which is described in considerable detail elsewhere’*®. For each cell, two-dimensional (2D) spatial (x~y) RF profiles are shown,
as isoamplitude contour maps (conventions as in Fig. 1), for six values of t. Below each contour plot is a 1D RF profile that is obtained by inte-
grating the 2D profile along the y axis, which is parallel to the cell’s preferred orientation. Positive deflections (shaded green) in these 1D profiles
indicate bright-excitatory subregions; negative deflections (shaded red) correspond to dark—excitatory subregions. Similar data have been pre-
sented elsewhere**®. (A) The RF of this simple cell is approximately space-time separable. Ffromt = 30 ms to t = 120 ms, the RF profile has two
dominant subregions, which are arranged with the dark—excitatory subregion on the left. These subregions are strongest at t = 75 ms. Between t
=120 msand t = 165 ms, the RF reverses polarity, so that the bright-excitatory subregion is now on the left. This arrangement then persists over
the remainder of the cell’s response duration. Note that, at all values of t, the 1D RF profile is approximately odd symmetric (sine phase). (B) A
fundamentally different type of spatiotemporal behavior is illustrated here. For this cell, the RF is space-time inseparable — the spatial organization
of the RF changes over time. At t = 20 ms, the 1D profile is approximately even symmetric (cosine phase) whereas, at t = 100 ms, the RF profile

is odd symmetric. Later, at t = 180 ms, the RF becomes even symmetric again but the profile is inverted relative to that at t = 20 ms.

temporal structure that is observed within the RF
center of either an ON- or OFF-center LGN cell
(Fig. 3A). Thus, the temporal organization of separable
simple-cell RFs seems consistent with the idea that
these RFs could be constructed from arrays of LGN
fields.

Unlike LGN neurons, however, a majority of simple
cells exhibit marked space-time inseparability*®. Two
such examples are shown in Fig. 3E and F. The x-t
plots for these cells exhibit bright- and dark-excitatory
subregions that are tilted in the space-time domain.
Consequently, there is no unique spatial (or temporal)
RF profile, because bright- and dark-excitatory sub-
regions move as a function of time. Clearly, for these
cells, the definition of a RF must incorporate both
space and time.

An important unresolved question concerns the
neuronal circuitry by which space-time inseparable
RFs are constructed. This process must take place with-
in striate cortex, because LGN cells do not exhibit tilt-
ed subregions in their x-t plots. One suggestion is that
inseparable simple-cell RFs are constructed from a pair
of separable simple-cell RFs that are arranged in spatial
and temporal quadrature’**. Another idea is that
inseparable RFs are constructed directly from a combi-
nation of lagged and nonlagged geniculate inputs to
the cortex*. Receptive-field maps of correlated dis-
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charge®” between simultaneously recorded LGN and
simple cells might help to differentiate between these
schemes, since the latter scheme predicts the existence
of simple cells with inseparable RFs that receive mono-
synaptic input from the LGN, whereas the former
scheme predicts that monosynaptically driven simple
cells should have separable RFs.

Thus far, the response properties of LGN and simple
cells, for which first-order* RF profiles provide a fairly
complete description, have been considered. For com-
plex cells, which exhibit overtly non-linear spatial
summation'®?', this is not the case. Figure 3G shows
x-t plots of the responses of a complex cell to bright
and dark stimuli (first-order RF profiles). Note that the
bright- and dark-responsive regions overlap almost
completely in the space-time domain, and there are
no distinct subregions visible within either domain.
Although they define the spatiotemporal envelope of
the RF, these first-order RF profiles have little predic-
tive power for determining the response of a complex
cell to an arbitrary stimulus*. However, second-order
RF profiles, which reveal non-linear interactions

*The termns first-order and second-order are used to refer to RF profiles
that are derived by computing the cross-correlation between a cell’s
response and either a single stimulus or a pair of stimuli, respectively.



Fig. 3. Spatiotemporal receptive field (RF) profiles (x-t plots) for
neurons recorded from the lateral geniculate nucleus (LGN) and
striate cortex of the cat. In each panel, the horizontal axis represents
space (x), and the vertical axis represents time (t). For panels A-F, solid
contours (with green shading) delimit bright-excitatory regions, where-
as broken contours (with red shading) indicate dark—excitatory regions.
To construct these x-t plots, 1D RF profiles (see Fig. 2) are obtained, at
finely spaced time intervals (5-10ms), over a range of values of t.
These 1D profiles are then ’stacked up’ to form a surface, which is
smoothed and plotted as a contour map (for details, see Refs 3 and 8).
(A) An x-t profile is shown here for a typical ON-center, non-lagged
X-cell from the LGN. For t < 50ms, the RF has a bright-excitatory
center and a dark—excitatory surround. However, for t > 50 ms, the RF
center becomes dark-excitatory, and the surround becomes
bright-excitatory. Similar spatiotemporal profiles are presented else-
where*®. (B) An x-t plot of an ON-center, lagged X-cell. Note that the
second temporal phase of the profile is strongest. (C) An x-t profile for
a simple cell with a space-time separable RF. Fort < 100 ms, the RF has
a dark—excitatory subregion to the left of a bright-excitatory subregion.
For t > 100ms, each subregion reverses polarity, so that the
bright—excitatory region is now on the left. Similar x-t data are pre-
sented elsewhere®®*. (D) Data for another simple cell with an approxi-
mately separable x-t profile. (E) Data are shown for a simple cell with
a clearly inseparable x-t profile. Note how the spatial arrangement of
bright— and dark-excitatory subregions (that is, the spatial phase of the
RF) changes gradually with time (see Refs 3, 5, 8, 13 and 35 for simi-
lar data). (F) An inseparable x-t profile is shown here for the same
simple cell for which 2D spatial profiles are shown in Fig. 2B. Note that
the subregions are tilted to the right in the space-time domain. (G)
x-t profiles are shown for the same complex cell as in Fig. 1C (see also
Ref. 9). Responses to bright and dark stimuli are shown separately
because these regions overlap extensively.

between stimuli presented at different positions or
times, have a spatiotemporal organization that is remi-
niscent of the first-order profiles of simple cells'>#*%,
These second-order RF profiles are thought to repre-
sent the structure of subunits that are combined to
form a complex cell’s RF. Gaska and colleagues’® have
shown recently that second-order RF profiles provide
accurate predictions of the orientation, spatial fre-
quency, and direction selectivity of complex cells in
the monkey.

Spatiotemporal mechanisms that underlie motion
selectivity

Recent studies of RF dynamics have provided a
greater understanding of the mechanisms that under-
lie motion selectivity. Unlike their geniculate ante-
cedents, most cortical neurons are quite selective for
stimulus velocity (that is, direction and speed). In the
geniculostriate pathway of cats and monkeys, neurons
that are strongly selective for direction of motion are
encountered commonly in the striate cortex'®#,
whereas X- and Y-type relay cells in the LGN seldom
exhibit more than a weak directional bias*'. The speed
tuning of cortical neurons is also much narrower than
that of LGN cells™.

What accounts for the striking directional selectivity
of many cortical neurons? Despite an abundance of
studies, a consensus regarding the mechanistic under-
pinnings of direction selectivity has emerged only
recently. Hubel and Wiesel™ suggested initially that
direction selectivity in simple cells could be explained
on the basis of the arrangement of ON and OFF sub-
regions within the RF. However, subsequent studies
revealed that these predictions often fail*'*2. Thus,
until about ten years ago, it was widely held that
direction selectivity originates via non-linear interac-
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tions, typically involving delayed excitation or inhibi-
tion between different parts of the RF (Refs 53 and 54).

More recently, theoretical®*** and psychophysical®®
studies have suggested that direction selectivity origi-
nates in the linear (that is, first order) spatiotemporal
RF structure of simple cells. Specifically, simple cells
with RF profiles that are tilted (that is, inseparable) in
the space-time domain (Fig. 3E and F) are expected to
exhibit a directional preference, whereas cells with
space-time separable RFs are not. Recent studies have
largely confirmed this prediction. A simple cell’s pre-
ferred direction of motion can be predicted reliably
from the structure of its x~t profile®* Moreover, accu-
rate estimates of the preferred speed of motion can be
derived by measuring the slope of oriented subregions
in the x—t profile®". These findings support the idea
that linear spatiotemporal mechanisms underlie
velocity selectivity (similar conclusions have also been
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Fig. 4. Relationship between x-t profile and ON/OFF responses.
Simulation of the response of a simple cell to a sustained flash of a bar
stimulus at two different positions (1 and 2) within the receptive field
(RF). (Yop.) lllustration, in a space~time coordinate frame, of the con-
volution process that is used to predict the response to a 300 ms flash
of a bright bar. The flashed-bar stimulus is represented as a horizontal
rectangle (yellow) in the space-time domain. The cell’s response is pre-
dicted by sliding the RF profile from left to right (three time frames from
this sliding process are illustrated). At each time interval, the predicted
response is given by the net volume of the x-t data that lie under the
bar stimulus, with bright- and dark-excitatory areas weighted positive-
ly and negatively, respectively’”. The convolution process that is used
here is based on the assumption of linear spatiotemporal summation,
which holds reasonably well for most simple cells**. Known non-linear-
ities, such as an expansive exponent®® or contrast normalization®,
would modify the shape of the predicted responses, but not the basic
ON/OFF pattern. (Bottom.) Smooth curves show predicted responses
of the cell to a flashed bright bar at positions 1 and 2. Broken portions
of the curves indicate inhibitory responses which, generally, cannot be
observed in the spike train of simple cells, owing to a lack of sponta-
neous discharge. At position 1, there is an excitatory response after
stimulus onset, whereas position 2 exhibits an excitatory discharge at
stimulus offset. Note that, if a dark bar is flashed over the RF instead of
a bright bar, the polarity of the predicted responses will be reversed, so
that position 1 gives an OFF response and position 2 gives an ON
response. Thus, the ON/OFF classification scheme is dependent upon
stimulus polarity.

reached by making measurements in the frequency
domain**).

Although the directional selectivity of simple cells
has its basis in linear RF structure, contrast-related
non-linearities appear to play a role in enhancing this
selectivity. Typically, linear predictions underestimate
the degree of direction selectivity that is observed in
the responses of simple cells to drifting gratings>3:%,
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However, these discrepancies can be accounted for
largely by two non-linear aspects of a cell’s response to
different contrasts — an expansive exponent and con-
trast gain control®*%%, These non-linearities accentu-
ate the directional bias that originates in the linear
spatiotemporal structure of the RF.

For complex cells, many of which are also direction-
selective, first-order RF profiles (Fig. 3G) cannot pre-
dict velocity tuning. For these cells, however, spatio-
temporally oriented RF subregions are revealed clearly
in second-order RF profiles, which are obtained by
probing non-linear interactions between different
positions and times within the RF (Refs 12 and 36).
These second-order RF profiles can be used to make
accurate predictions of a complex cell’s tuning charac-
teristics, including its direction selectivity®.
Moreover, these second-order profiles are consistent
with those that are predicted by a motion-energy
model’, in which the complex-cell RF is constructed
from a non-linear combination of simple-like RFs that
are space-time inseparable. The non-linear response
properties of complex cells appear to make them well
suited to signal local image velocity independently of
other factors, such as contrast polarity and spatial
phase, that are confounded in the responses of simple
cells.

Origin of ON and OFF responses

Because spatiotemporal RF maps are relatively new
to visual neurophysiology, it is important to clarify
how the organization of x-t profiles relates to the
traditional ON/OFF classification scheme. The RFs of
visual neurons are usually described in terms of ‘ON’
and ‘OFF’ responses, which are discharges that occur
at the onset or offset, respectively, of a spot of light.
Simple-cell and LGN RFs have spatially segregated ON
and OFF subregions, whereas complex-cell RFs do not"®.

Because the x-t profile provides an almost complete
description of the response properties of most simple
cells, the relationship between spatiotemporal RF pro-
files and the traditional ON/OFF classification scheme
can be explored by making linear predictions of the
response of a simple cell to a conventional stimulus.
Figure 4 shows predicted responses of a simple cell,
with a space-time separable RF, to a bar of light that is
flashed at one of two positions within the RF. At pos-
ition 1, the cell’s x-t profile has a bright-excitatory
phase followed by a dark-excitatory phase; this con-
figuration yields an ‘ON’ response to the flashed bar.
At position 2, the RF has a dark-excitatory phase fol-
lowed by a bright-excitatory phase, resulting in an
‘OFF response to the same stimulus. Note that the
biphasic nature of this cell’s RF profile is essential to
the generation of an OFF response at position 2.
However, it must be emphasized that the second tem-
poral response phase of the x~t profile does not rep-
resent an offset response to the mapping stimuli. The
biphasic temporal-response pattern that is exhibited
by most LGN and simple cells is an intrinsic property
of these neurons, and does not result from ‘mixed
ON/OFF regions’, as suggested recently’. Thus,
although ON and OFF responses can be predicted
from the x~t profile, the converse is not true.

This point is further illustrated by Fig. SA, which
shows predicted responses of a simple cell that has a
space-time inseparable RF. Response predictions at
three different spatial positions illustrate that the RF



can be approximately parceled into
two ‘ON’ regions, with an ‘OFF’ re-
gion in between (Fig. 54, right). This

G. DeAngelis, . Ohzawa and R. Freeman — Receptive-field dynamics

REVIEW

Stimulus

simulation might explain why
earlier studies'®?, using the ON/OFF
classification, did not distinguish
between simple cells that have
separable and inseparable RFs.
Although the ON/OFF map can be
derived from the x-t profile, the
ON/OFF description is not complete,
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nor is it unique. For example, a
simple cell’s velocity selectivity can
be predicted from the x—f profile®**
but not from the ON/OFF map.

In some cases, ON/OFF classifi- B
cation of RF structure can give erro-
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neous results. Figure 5B shows data
for a simple cell with a RF profile that
is bipartite in space, and monophasic
in time. The predicted response to
a bright bar at position 1 shows a
sustained period of excitation,
beginning just after stimulus onset
and terminating at stimulus offset.
This can be considered an ON
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response. At position 2, there is a
sustained inhibitory response that is
usually not observable due to a lack
of spontaneous discharge®. There
is no OFF response to a bright bar
at position 2, although there is a
dark-excitatory subregion here.
Hence, the size and periodicity of the
RF might be underestimated when
testing with only a bright bar, because a dark—excitatory
subregion is not equivalent to an OFF region.

Concluding remarks

In this review, a systems-analysis approach to char-
acterizing the response properties of neurons in the
central visual pathways has been considered. The
essenice of this approach is to obtain a complete
description of the input-output relationship of a
neuron (that is, its RF profile) by testing it with a rich,
spatiotemporal stimulus (‘white noise’). By extending
the traditional description of visual RFs into the joint
space-time (x-y-t) domain, recent studies of RF
dynamics have provided new information about
mechanisms of visual-information processing in the
geniculostriate pathway. An inescapable conclusion of
these studies is that the RF must be treated as a spatio-
temporal entity. For cells with space-time inseparable
RFs, a spatiotemporal response profile is the minimum
acceptable descriptor, because there is no unique
spatial (or temporal) RF profile.

Future work will undoubtedly extend the descrip-
tion of visual RFs even further. In this review, for
example, we have only considered the responses of
neurons to monocular stimulation. However, because
most neurons in the striate cortex receive binocular
input’®, a complete description of these RFs involves
consideration of a fourth dimension: depth (or
binocular disparity), z. A description of RFs in the
x-y-z-t domain awaits further research, although
recent work has made important strides toward this
goal'?.

In principle, white-noise analysis can provide a
complete characterization of the behavior of any non-
linear system*+*. However, it is worth noting that
successful application of these methods has thus far
been limited to the study of neurons in the early
portions of the visual pathway, for which response
properties are well described in terms of first- and
second-order correlations. For neurons in higher visual
areas, the increasing complexity of organization of RFs
is likely to necessitate the measurement of higher-
order correlations, thus requiring longer recording
times. Moreover, owing to practical considerations in
the design of experiments, there might be important
determinants of neuronal selectivity that are not rep-
resented in spatiotemporal RF maps. For example,
because white-noise mapping is usually performed
at a fixed contrast level, dynamic non-linearities such
as contrast gain control® might be overlooked. To
obtain a complete input-output description for a
neuron, one must have access to all of the relevant
inputs. This might prove to be problematic for
studying neurons in extra-striate cortical areas, where
extra-retinal factors such as attention, memory, and
eye position often modulate neuronal responses®.
Despite these considerations, however, white-noise
analysis has considerable potential for elucidating the
details of RF structure at higher levels in the visual
pathway.
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